ar X iv : m at h / 06 11 72 1 v 1 [ m at h . PR ] 2 3 N ov 2 00 6 A LATTICE GAS MODEL FOR THE INCOMPRESSIBLE NAVIER - STOKES EQUATION
نویسندگان
چکیده
We recover the Navier-Stokes equation as the incompressible limit of a stochastic lattice gas in which particles are allowed to jump over a meso-scopic scale. The result holds in any dimension assuming the existence of a smooth solution of the Navier-Stokes equation in a fixed time interval. The proof does not use non-gradient methods or the multi-scale analysis due to the long range jumps.
منابع مشابه
ar X iv : m at h / 05 05 09 0 v 1 [ m at h . PR ] 5 M ay 2 00 5 SUPERDIFFUSIVITY OF TWO DIMENSIONAL LATTICE GAS MODELS
It was proved [4, 13] that stochastic lattice gas dynamics converge to the Navier-Stokes equations in dimension d = 3 in the incompressible limits. In particular, the viscosity is finite. We proved that, on the other hand, the viscosity for a two dimensional lattice gas model diverges faster than log log t. Our argument indicates that the correct divergence rate is (log t) 1/2. This problem is ...
متن کاملar X iv : 0 90 7 . 41 78 v 1 [ m at h . PR ] 2 3 Ju l 2 00 9 An Introduction to Stochastic PDEs
2 Some Motivating Examples 2 2.1 A model for a random string (polymer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 The stochastic Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.3 The stochastic heat equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.4 What have we learned? . . . . . . . . . . . . . . . . . . . . . ...
متن کاملar X iv : m at h / 06 11 45 2 v 1 [ m at h . A G ] 1 5 N ov 2 00 6 UNIRATIONALITY OF CERTAIN SUPERSINGULAR K 3 SURFACES IN CHARACTERISTIC
We show that every supersingular K3 surface in characteristic 5 with Artin invariant ≤ 3 is unirational.
متن کاملar X iv : h ep - l at / 0 11 00 06 v 3 6 N ov 2 00 1 1 Matrix elements of ∆ S = 2 operators with Wilson fermions
متن کامل
ar X iv : m at h / 06 11 11 6 v 1 [ m at h . PR ] 5 N ov 2 00 6 SLE 6 and CLE 6 from Critical Percolation ∗
We review some of the recent progress on the scaling limit of two-dimensional critical percolation; in particular, the convergence of the exploration path to chordal SLE6 and the “full” scaling limit of cluster interface loops. The results given here on the full scaling limit and its conformal invariance extend those presented previously. For site percolation on the triangular lattice, the resu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006